Blocking and Frontogenesis by Two-Dimensional Terrain in Baroclinic Flow. Part I: Numerical Experiments

نویسنده

  • STEPHEN T. GARNER
چکیده

The shallow atmospheric fronts that develop in the early winter along the east coast of North America have been attributed, in various modeling and observational studies, to the land–sea contrasts in both surface heating and friction. However, typical synoptic conditions are such that these ‘‘coastal’’ fronts could also be a type of upstream influence by the Appalachian Mountain chain. Generalized models have suggested that relatively cold air can become trapped on the windward side of a mountain range during episodes of warm advection without a local contribution from differential surface fluxes. Such a process was proposed decades ago in a study of observations along the coast of Norway. Could coastal frontogenesis be primarily a consequence of a mountain circulation acting on the large-scale temperature gradient? A two-dimensional, terrain-following numerical model is used to find conditions under which orography may be sufficient to cause blocking and upstream frontogenesis in a baroclinic environment. The idealized basic flow is taken to have constant vertical shear parallel to a topographic ridge and a constant perpendicular wind that advects warm or cold temperatures toward the ridge. Land–sea contrasts are omitted. In the observed cases, the mountain is ‘‘narrow’’ in the sense that the Rossby number is large. This by itself increases the barrier effect, but the experiments show that large-scale warm advection is still crucial for blocking. For realistic choices of ambient static stability and baroclinicity, the flow can be blocked by a range like the northern Appalachians if the undisturbed incident wind speed is around 10 m s21. Cold advection weakens the barrier effect. The long-term behavior of the front in strongly blocked cases is described and compared to observations. Because of the background rotation and large-scale temperature advection, blocked solutions cannot become steady in the assumed environment. However, the interface between blocked and unblocked fluid can settle into a balanced configuration in some cases. A simple argument suggests that, in the absence of dissipation, the frontal slope should be similar to that of the ambient ‘‘absolute momentum’’ surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking and Frontogenesis by Two-Dimensional Terrain in Baroclinic Flow. Part II: Analysis of Flow Stagnation Mechanisms

Numerical solutions presented in a companion paper show that two-dimensional mesoscale terrain becomes a much stronger barrier to a continuously stratified flow when the flow contains warm advection. Here it is shown that this baroclinic enhancement is a strictly nonlinear phenomenon. The linear analysis indicates a weakening of the upstream response in warm advection. However, a weakly nonline...

متن کامل

Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer

The generation and destruction of stratification in the surface mixed layer of the ocean is understood to result from vertical turbulent transport of buoyancy and momentum driven by air–sea fluxes and stresses. In this paper, it is shown that the magnitude and penetration of vertical fluxes are strongly modified by horizontal gradients in buoyancy and momentum. A classic example is the strong r...

متن کامل

An Orographic Mechanism for Rapid Frontogenesis

Observations of the New England coastal front show that the extraordinary temperature gradients are caused by ageostrophic wind deformation, that is, deformation in the vertical plane. The phenomenon is therefore an instance of rapid (non-classical) frontogenesis, a process broadly characterized by a lack of geostrophic balance between the temperature gradient and vertical wind shear. The prima...

متن کامل

Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model

Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...

متن کامل

Numerical Study of Bubble Separation and Motion Using Lattice Boltzmann Method

In present paper acombination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method have been used to simulate the motion of bubble and effect of wetting properties of the surface on bubble separation. By combining these models, three-dimensional model has been used in two-dimension for decreasing the computational cost. Firstly, it has been ensured that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997